ISSN (Print): 2306-2053

Входит в eLIBRARY.RU

Импакт-фактор РИНЦ: 0,784

download

Abstract

This article uses the general theory of elliptic equations. The main investigation method is the resolvent method. Uniqueness conditions for the recovery of potential are obtained for the Borg-Levinson inverse problem with the Robin boundary conditions on N-dimensional parallelepiped under the known asymptotic expansions of the eigenvalues. This result is in accord with the results which had been obtained for the problem with the Neumann boundary conditions. The theorem can be used for solving inverse spectral problems and development of numerical methods.

Keywords

Elliptic operators, spectral theory, inverse problems, uniqueness theorem, resolvent method, eigenvalues.

1. Ambartsumian V. Zeitschrift für Physik, 1929, Bd. 53, s. 690 – 695.

2. Berezanskiy Yu.M. Transactions of the Moscow Mathematical Society, 1958, vol . 7, no. 3. (In Russ.)

3. Isosaki H. J. Math. Kyoto Univ, 1991, vol.31, no. 3, pp. 743-753.

4. Nachman A., Sylvester J., Uhlmann G. Commun. Math. Phus, 1988, vol. 115, pp. 595-605.

5. Dubrovskii V.V., Kadchenko S.I., Kravchenko V.F., Sadovnichii V.A. Doklady Mathematics, 2001, vol. 64, no. 2, pp. 165-168.

6. Dubrovskii V.V., Kadchenko S.I., Kravchenko V.F., Sadovnichii V.A. Doklady Mathematics, 2001, vol. 64, no. 3, pp. 425-429.

7. Dubrovskii V.V., , Kadchenko S.I., Kravchenko V.F., Sadovnichii V.A. Doklady Mathematics, 2001, vol. 63, no. 3, pp. С.355-358.

8. Smirnova L.V. Software of systems in the industrial and social fields, 2012, pp.57 – 66. (In Russ.)

9. Dubrovskii V.V., Smirnova L.V. Journal of Mathematical Sciences, 1999, vol. 5, no. 2, pp. 411-416. (In Russ.)

10. Smirnova L.V. Software of systems in the industrial and social fields, 2013, 1 (3), pp. 11-17. (In Russ.)

11. Smirnova L.V. Proceedings of the 4th International Academic Conference. Publishing House Science and Innovation Center, Ltd, Louis, 2013.

12. Smirnova L.V., Kushkumbaeva A.S., Torshina O.A. Acsr-Advances in Comptuer Sclence Research, 2016, vol. 51, pp. 494-497.

13. Torshina O.A. Vestnik MaGU. Matematika, 2003, vol. 4, pp. 183-215. (In Russ.)

14. Ladyizhenskaya O.A., Uraltseva N.N. Lineynyie i kvazilineynyie uravneniya ellipticheskogo tipa. Science, Moscow, 1962. (In Russ.)

15. Kinzina I.I. Russian Mathematics (Iz. VUZ), 2008, no. 6, pp. 16-24. (In Russ.)

Smirnova L.V. and I.I. Kinzina (2018) Uniqueness of solution of Borg-Levinson inverse problem on N-dimensional parallelepiped. Software of systems in the industrial and social fields, 6 (1): 2-7.