Abstract
There are oscillators with the mutual transformation of the kinetic energy of the load into the energy of the magnetic field or with the mutual transformation of the kinetic energy of the load into the energy of the electric field. And also oscillators with the mutual transformation of the potential energy of the spring into the energy of the electric field or with the mutual transformation of the potential energy of the spring into the energy of the magnetic field. The aim of this work is to build a mathematical model of a tri-inductive oscillator. In the LLL oscillator, free current fluc- tuations occur (without external power supply). This means that any phase is a source of reactive power for the other two phases. This circumstance creates a prerequisite for reducing the flow of reactive power in the network due to the mutual compensation of the reactive power of the phases. In other words, the phases of a balanced load can at least par- tially exchange reactive power with each other, and not with the network.
Keywords
oscillator, energy, tri-inductive, oscillations, reactive power, phase.
1. Popov, I.P. (2013) Vestnik Kurganskogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2(29): 80-81.
2. Popov, I.P. (2016) Vestnik Pskovskogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 4: 89-94.
3. Popov, I.P. (2019) Vestnik Kaluzhskogo universiteta, 4: 71-73.
4. Popov, I.P. (2013) Zaural'skij nauchnyj vestnik, 2(4): 65-66.
5. Popov, I.P. (2014) Vestnik NGAU, 4(33): 173-177.
6. Popov, I.P. (2017) Vestnik Morskogo gosudarstvennogo universiteta im. admirala G.I. Nevel'skogo. Seriya: Avtomaticheskoe up- ravlenie, matematicheskoe modelirovanie i informacionnye tekhnologii, 78: 93-97.
7. Popov, I.P. (2016) Vestnik Tverskogo gosudarstvennogo tekhnicheskogo universiteta, 1(29): 7-11.
8. Popov, I.P. (2019) Avtomatizirovannye tekhnologii i proizvodstva, 1 (19): 18-20.
9. Popov, I.P. (2011) Zaural'skij nauchnyj vestnik, 1: 181-183.
10. Popov, I.P. [i dr.] (2016) Vestnik Kurganskogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 3(42): 87-89.
Popov I.P. (2021) Mathematical model of a tri-inductive oscillator. Software of systems in the industrial and social fields. 9 (1): 9-11. DOI: 10.18503/2306-2053-2021-9-1-9-11.