ISSN (Print): 2306-2053

Входит в eLIBRARY.RU

Импакт-фактор РИНЦ: 0,784

download

Abstract

The most important problems of the spectral theory include the determination of the defect index of a differential operator as a function of the behavior of the coefficients of the differential expression. The main task of the spectral theory of differential operators is the characteristic of the spectrum of the operator also depending on the behavior of the coefficients of the differential expression generating the operator. In this paper we study the dependence of the spectrum on the behavior of the coefficients of the corresponding differential expression. The asymptotic behavior of the eigenvalues and eigen functions of a differential operator is studied, some information is obtained on the characteristic of the behavior of eigenvalues that are of interest in the theory of differential operators.

Keywords

Eigenvalues, behavior of coefficients, spectral theory, differential operator.

1. Weyl H. Uber beschrankte quadratische Formen,deren Differenz vollstetig ist.Rend.circ.mat. Palermo,1909. Vol. 27.

2. Weyl H. Uber gewohnliche lineare Differentialgleichungen mit singularen Stellen und ihre Eigenfunktionen. Gottingen Nachrichten.1909.

3. Weyl H. Math. Ann, 1910, no. 68, pp. 220-269.

4. Berezanskiy Yu.M. Razlozhenie po sobstvennyim funktsiyam samosopryazhennyih operatorov. Kiev, 1965.

5. Dunford N., Schwarz J. Linears operators. Mir, Moscow, 1966.

6. Plesner A.I., Rohlin V.A. UMN, 1941. no. IX, pp. S.3-125.

7. Riss F., Sekefalvi-Nad D. Lektsii po funktsionalnomu analizu. IL, Moscow, 1954.

8. Moren K. Metodyi gilbertova prostranstva. Mir, Moscow,.1965.

9. Neumann J. Matematicheskie osnovyi kvantovoy mehaniki. Nauka, Moscow, 1964.

10. Titchmarsh E.C. Razlozheniya po sobstvennyim funktsiyam,svyazannyie s differentsialnyimi uravneniyami vtorogo poryadka. IL, Moscow, 1960.

11. Naymark M.A. Lineynyie differentsialnyie operatoryi. Nauka, Moscow, 1969.

12. Glazman I.M. Pryamyie metodyi kachestvennogo spektralnogo analiza singulyarnyih differentsialnyih operatorov. Nauka, Moscow, 1963.

13. Krulikovskiy N.N. Puti razvitiya spektralnoy teorii obyiknovennyih differentsialnyih operatorov. Tomsk, 2008.

Berdenova G.Zh., Karim A.O. (2018) On the eigenvalues of a differential operator. Software of systems in the industrial and social fields, 6 (2): 2-18.