ПРИКЛАДНАЯ МАТЕМАТИКА

APPLIED MATHEMATICS

УДК 514.1 DOI: 10.18503/2306-2053-2021-9-1-2-9

ОБОБЩЕНИЕ НА *N*-СИМПЛЕКСЫ НЕКОТОРЫХ СООТНОШЕНИЙ ДЛЯ ТРЕУГОЛЬНИКОВ

Павлов В.Д.

Аннотация. Многомерные симплексы, частными случаями которых являются тетраэдры и треугольники, широко используются как в науке, так и в технических приложениях. Рассматриваемые теоремы являются обобщением на *п*-мерные симплексы некоторых положений и теорем для треугольников и тетраэдров, являющихся, соответственно, двумерными и трехмерными симплексами. Дано определение угла *п*-симплекса, под которым понимается угол между двумя его гранями. Вводится представление об ориентации элементов *п*-симплексов относительно друг друга. Дано правило определения последовательности рассмотрения вершин при аналитическом описании граней *п*-симплекса. Доказан ряд теорем для *п*-симплексов, в т.ч. теорема косинусов, теорема Пифагора, теорема о проекциях и др. Приведенные теоремы справедливы также для *п*-симплексов, порядок которых ниже порядка пространства, в котором они рассматриваются.

Ключевые слова: п-симплекс, косинус, проекция, тетраэдр, треугольник.

Введение

Многомерные симплексы, частными случаями которых являются тетраэдры и треугольники, широко используются как в науке, так и в технических приложениях [1-5].

Рассматриваемые ниже теоремы являются обобщением на n-мерные симплексы некоторых положений и теорем для треугольников и тетраэдров, являющихся, соответственно, двумерными и трехмерными симплексами.

Определение 1. Угол *n*-симплекса – это угол между двумя его гранями.

При аналитическом описании граней n-симплекса, как частей линейных пространственных объектов (здесь и далее под линейными пространственными объектами будем понимать прямые, плоскости и гиперплоскости), проходящих через n точек, последние удобно рассматривать в последовательности, обусловливающей одинаковую ориентацию соответствующих линейных пространственных объектов относительно внутреннего пространства n-симплекса.

Например, для треугольника с вершинами $P_1(x_1, y_1)$, $P_2(x_2, y_2)$, $P_3(x_3, y_3)$ точки удобно рассматривать в таких последовательностях: (P_1, P_2) ; (P_2, P_3) ; (P_3, P_1) или (P_1, P_3) ; (P_3, P_2) ; (P_2, P_1) . При этом прямые, проходящие через соответствующие точки, будут ориентированы по часовой стрелке или против часовой стрелки каждая относительно внутреннего пространства треугольника.

Для тетраэдра с вершинами P_1 (x_1 , y_1 , z_1), P_2 (x_2 , y_2 , z_2), P_3 (x_3 , y_3 , z_3), P_4 (x_4 , y_4 , z_4) последовательности могут быть такими: (P_1 , P_2 , P_4); (P_1 , P_4 , P_3); (P_1 , P_3 , P_2); (P_2 , P_3 , P_4) или (P_1 , P_4 , P_2); (P_1 , P_3 , P_4); (P_1 , P_2 , P_3); (P_2 , P_4 , P_3). При этом плоскости, проходящие через соответствующие точки, ориентированы каждая наружу или каждая внутрь относительно внутреннего пространства тетраэдра. И так далее.

Аналитические результаты

Рассмотрим две грани n-симплекса, линейные пространственные объекты которых ориентированы одинаково относительно его внутреннего пространства. Эти грани являются (n-1)-симплексами. Местом их пересечения является (n-2)-грань ((n-2)-симплекс). С этим (n-2)-симплексом совпадают 2 линейных пространственных объекта порядка (n-2), каждый из которых относится к своему (n-1)-симплексу.

Предложение 1. Названные линейные пространственные объекты порядка (n-2) ориентированы противоположно друг другу.

Действительно, для тетраэдра $P_1P_2P_3P_4$ линейным пространственным объектом, соответствующим ребру, по которому пересекаются грани $P_1P_2P_4$ и $P_1P_4P_3$, принадлежащим в

месте пересечения грани $P_1P_2P_4$, является прямая P_4P_1 . Соответственно грани $P_1P_4P_3$ – прямая P_1P_4 , проходящая в противоположном направлении.

Для четырехмерного симплекса $P_1P_2P_3P_4P_5$ такими объектами являются, например, плоскости, проходящие соответственно через точки P_1 , P_3 , P_4 и P_1 , P_4 , P_3 .

Индуктивно это предложение распространяется на любой n-симплекс.

На основе предложения 1 сформулируем правило определения последовательности рассмотрения вершин при аналитическом описании граней *n*-симплекса, имеющих общую вершину, как частей линейных пространственных объектов.

Правило 1. Все последовательности начинаются с общей вершины. Каждая следующая последовательность образуется из предыдущей путем вычеркивания вершины, стоящей на втором месте, и добавлением в конец вершины, отсутствующей в предыдущей последовательности. При этом при четном n следующим друг за другом последовательностям необходимо приписывать противоположные знаки, т.е. после того, как будут составлены все n последовательностей (n четное), нужно во всех четных или нечетных последовательностях сделать по нечетному числу перестановок.

Дело в том, что последовательность с вычеркнутой вершиной, стоящей на втором месте, определяет (n-2)-грань n-симплекса, по которой пересекаются две его грани, и при четном n отличается от предыдущей последовательности этих вершин четным числом перестановок, обусловливая одинаковую ориентацию линейных пространственных объектов, которым принадлежит эта (n-2)-грань, и соответствующим смежным граням. А в соответствии с предложением 1 ориентация должна быть противоположной.

Для треугольника $P_1P_2P_3$: (P_1, P_2) , $-(P_1, P_3)$ или (P_1, P_2) , (P_3, P_1) .

Для тетраэдра $P_1P_2P_3P_4$: (P_1, P_2, P_3) , (P_1, P_3, P_4) , (P_1, P_4, P_2) .

Для четырехмерного симплекса $P_1P_2P_3P_4P_5$: (P_1, P_2, P_3, P_4) , $-(P_1, P_3, P_4, P_5)$, (P_1, P_4, P_5, P_2) , $-(P_1, P_5, P_2, P_3)$ или (P_1, P_2, P_3, P_4) , (P_1, P_4, P_3, P_5) , (P_1, P_4, P_5, P_2) , (P_1, P_2, P_5, P_3) .

И так далее.

Предложение 2. Угол между линейными пространственными объектами, соответствующими гранями n-симплекса, ориентированным одинаково относительно внутреннего пространства n-симплекса, равен $\pi - \alpha$, где α – угол между соответствующими гранями.

Действительно, для треугольника $P_1P_2P_3$ угол между P_1P_2 и P_3P_1 равен $\pi - \alpha$.

Для тетраэдра $P_1P_2P_3P_4$ угол между плоскостями, проходящими соответственно через точки P_1, P_2, P_4 и P_1, P_4, P_3 равен $\pi - \alpha$.

Индуктивно это предложение распространяется на любой n-симплекс.

Прежде, чем сформулировать и доказать ряд теорем, сопоставим известные выражения для объема граней и косинуса угла между гранями, а также уравнения линейных пространственных объектов, соответствующих граням, для симплексов различных порядков.

Для треугольника соответственно

$$d_3^2 = A_3^2 + B_3^2,$$

где
$$A_3=\begin{vmatrix}y_1&1\\y_2&1\end{vmatrix}$$
; $B_3=\begin{vmatrix}x_1&1\\x_2&1\end{vmatrix}$;
$$\cos\alpha_{12}=\frac{A_1A_2+B_1B_2}{\sqrt{A_1^2+B_1^2}\sqrt{A_2^2+B_2^2}}\;;$$

$$A_1x+B_1y+\mathcal{C}_1=0\;.$$

Для тетраэдра
$$S_4^2 = \frac{1}{4}(A_4^2 + B_4^2 + C_4^2),$$

где
$$A_4 = \begin{vmatrix} y_1 & z_1 & 1 \\ y_2 & z_2 & 1 \\ y_3 & z_3 & 1 \end{vmatrix}; B_4 = \begin{vmatrix} z_1 & x_1 & 1 \\ z_2 & x_2 & 1 \\ z_3 & x_3 & 1 \end{vmatrix}; C_4 = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix};$$

$$\cos\alpha_{12} = \frac{A_1A_2 + B_1B_2 + C_1C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2}\sqrt{A_2^2 + B_2^2 + C_2^2}}, A_1x + B_1y + C_1z + D_1 = 0.$$

Для четырехмерного симплекса

$$V_5^2 = \frac{1}{36}(A_5^2 + B_5^2 + C_5^2 + D_5^2),$$

ГД

$$A_5 = \begin{vmatrix} y_1 & z_1 & t_1 & 1 \\ y_2 & z_2 & t_2 & 1 \\ y_3 & z_3 & t_3 & 1 \\ y_4 & z_4 & t_4 & 1 \end{vmatrix}; B_5 = \begin{vmatrix} z_1 & x_1 & t_1 & 1 \\ z_2 & x_2 & t_2 & 1 \\ z_3 & x_3 & t_3 & 1 \\ z_4 & x_4 & t_4 & 1 \end{vmatrix}; C_5 = \begin{vmatrix} x_1 & y_1 & t_1 & 1 \\ x_2 & y_2 & t_2 & 1 \\ x_3 & y_3 & t_3 & 1 \\ x_4 & y_4 & t_4 & 1 \end{vmatrix}, D_5 = \begin{vmatrix} x_1 & z_1 & y_1 & 1 \\ x_2 & z_2 & y_2 & 1 \\ x_3 & z_3 & y_3 & 1 \\ x_4 & z_4 & y_4 & 1 \end{vmatrix},$$

$$\cos\alpha_{12} = \frac{A_1A_2 + B_1B_2 + C_1C_2 + D_1D_2}{\sqrt{A_1^2 + B_1^2 + C_1^2 + D_1^2}}; A_1x + B_1y + C_1z + D_1t + E_1 = 0.$$

Для п-симплекса

$$V_i^2 = \frac{1}{[(n-1) \rightleftarrows !]^2} \sum_{l=1}^n A_{li}^2,$$
 где $A_{li} = (-1)^{l+1} \begin{bmatrix} x_{11} & x_{21} & \dots & x_{l1} & \dots & x_{n \rightleftarrows 1} & 1\\ x_{12} & x_{22} & \dots & x_{l2} & \dots & x_{n2} & 1\\ \dots & \dots\\ x_{1i} & x_{2i} & \dots & x_{l \rightleftarrows i} & \dots & x_{n \rightleftarrows \rightleftarrows i} & 1\\ \dots & \dots & \dots & \dots & \dots & \dots & \dots\\ x_{1(n+1)} & x_{2(n+1)} & \dots & x_{l(n+1)} & \dots & x_{n(n+1)} & 1 \end{bmatrix};$

$$\cos \alpha_{ij} = \frac{\sum_{l=1}^{n} A_{li} A_{lj}}{\sqrt{\sum_{l=1}^{n} A_{l, i}^{2}} \sqrt{\sum_{l=1}^{n} A_{l, i}^{2}}; \sum_{l=1}^{n} A_{li} x_{l} + A_{n+1} = 0.$$

Таким образом, в отношении указанных выражений симплексы для различных n изоморфны.

Теорема 1. (Теорема косинусов для *n*-симплексов). Для *n*-симплекса

$$V_i^2 = \sum_{\substack{j=1\\j\neq i}}^{n+1} \left[V_j^2 - 2 \sum_{\substack{k=1\\k\neq i\\k \rangle j}}^{n+1} V_j V_k \cos(H_j, H_k) \right], \tag{1}$$

где H_i , H_k — грани n-симплекса.

Доказательство. При аналитическом описании граней n-симплекса будем придерживаться правила 1. Перепишем правую часть выражения (1) в виде:

$$\frac{1}{[(n-1) \stackrel{?}{\rightleftharpoons} !]^2} \sum_{\substack{j=1 \ j \neq i}}^{n+1} \left[\sum_{l=1}^n A_{lj}^2 - 2 \sum_{\substack{k=1 \ k \neq i \ k \rangle j}}^{n+1} \sqrt{\sum_{l=1}^n A_{lk}^2} \sqrt{\sum_{l=1}^n A_{lk}^2} \left(-1 \right) \frac{\sum_{l=1}^n A_{lj} A_{lk}}{\sqrt{\sum_{l=1}^n A_{lj}^2} \sqrt{\sum_{l=1}^n A_{lk}^2}} \right] =$$

$$= \frac{1}{[(n-1) \stackrel{?}{\leftarrow} !]^2} \sum_{l=1}^{n} \left(\sum_{\substack{j=1\\j\neq i}}^{n+1} A_{lj} \right)^2 = \frac{1}{[(n-1) \stackrel{?}{\leftarrow} !]^2} \sum_{l=1}^{n} \left[\sum_{\substack{j=1\\j\neq i}}^{n+1} \pm C_{lj(n+1)} \right]^2,$$

где $C_{lj(n+1)}$ — алгебраическое дополнение определителя (n+1)-порядка (множитель (-1) обусловлен тем, что $cos(\pi - \alpha) = -cos(\alpha)$,

$$D_{l} = \begin{vmatrix} x_{11} & \dots & x_{l1} & \dots & x_{n1} & 1 & 1 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ x_{1i} & \dots & x_{li} & \dots & x_{ni} & 1 & 1 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ x_{1(n+1)} & \dots & x_{l(n+1)} & \dots & x_{n(n+1)} & 1 & 1 \end{vmatrix} = 0.$$

Знак перед $C_{lj(n+1)}$ зависит от выбора ориентации линейных пространственных объектов, к которым принадлежат грани n-симплекса, относительно его внутреннего замкнутого пространства.

Добавим к внутренней сумме и вычтем $\mathcal{C}_{li(n+1)}$, тогда

$$\begin{split} \frac{1}{[(n-1) \stackrel{?}{\hookleftarrow} !]^2} \sum_{l=1}^n \left[\sum_{\substack{j=1 \ j \neq i}}^{n+1} \pm C_{l,\stackrel{?}{\smile} j(n+1)} + C_{li(n+1)} - C_{li(n+1)} \right]^2 = \\ = \frac{1}{[(n-1) \stackrel{?}{\hookleftarrow} !]^2} \sum_{l=1}^n \left[\pm D_l \mp C_{li(n+1)} \right]^2 = \frac{1}{[(n-1) \stackrel{?}{\hookleftarrow} !]^2} \sum_{l=1}^n A_{li}^2 = V_i^2. \end{split}$$

Теорема доказана.

Определение 2. Грани ортогонального *n*-симплекса, пересекающиеся друг с другом под прямым углом, являются катетами. Грань, не являющаяся катетом, есть гипотенуза.

Предложение 3. В ортогональном n-симплексе содержится n катетов и одна гипотенуза.

Следствие. (Теорема Пифагора для ортогонального n-симплекса). Для ортогонального n-симплекса

$$V_G^2 = \sum_{i=1}^n V_{k, \stackrel{>}{\sim} i}^2.$$

Теорема 2. (Теорема о проекциях для n-симплекса). Для n-симплекса объем грани равен сумме проекций на нее объемов остальных граней, т.е.

$$V_{i} = \sum_{\substack{j=1\\j\neq i}}^{n+1} [V_{j} \cos(H_{i}, H_{j})].$$
(2)

Доказательство. Перепишем правую часть выражения (2) в виде:

$$\frac{1}{(n-1)!} \sum_{\substack{j=1\\j\neq i}}^{n+1} \sqrt{\sum_{i=1}^{n} A_{ij}^2} \cdot (-1) \sum_{l=1}^{n} A_{li} A_{il} \cdot \left(\sqrt{\sum_{l=1}^{n} A_{li}^2} \cdot \sqrt{\sum_{l=1}^{n} A_{lj}^2}\right)^{-1}$$

$$= \frac{-1}{(n-1)!} \left(\sqrt{\sum_{l=1}^{n} A_{lj}^{2}} \right)^{-1} \sum_{l=1}^{n} A_{li} \cdot \sum_{j=1}^{n+1} A_{lj} =$$

$$= \frac{-1}{(n-1)!} \left(\sqrt{\sum_{l=1}^{n} A_{lj}^{2}} \right)^{-1} \sum_{l=1}^{n} A_{li} \left[\sum_{j=1}^{n+1} C_{lj(n+1)} + C_{li(n+1)} - C_{li(n+1)} \right] =$$

$$= \frac{\pm 1}{(n-1)!} \left(\sqrt{\sum_{l=1}^{n} A_{lj}^{2}} \right)^{-1} \sum_{l=1}^{n} A_{li} \left[D_{l} \mp C_{li(n+1)} \right] = \pm \sum_{l=1}^{n} A_{li} A_{li} \cdot \frac{1}{(n-1)!} \left(\sqrt{\sum_{l=1}^{n} A_{lj}^{2}} \right)^{-1} =$$

$$= \pm \sum_{l=1}^{n} A_{li}^{2} \cdot \frac{1}{(n-1)!} \cdot \left(\sqrt{\sum_{l=1}^{n} A_{lj}^{2}} \right)^{-1} = \frac{\pm 1}{(n-1)} \stackrel{?}{\rightleftharpoons} \frac{1}{(n-1)!} \cdot \frac{1}$$

Теорема доказана.

Теорема 3. Для ортогонального n-симплекса

$$\frac{V_{Ki}}{V_G} = \cos(G, K_i).$$

Доказательство. Из теоремы Пифагора

$$V_{Ki}^2 = V_G^2 - \sum_{\substack{j=1\\j\neq i}}^n V_{Kj}^2.$$

Из теоремы косинусов

$$V_{Ki}^{2} = V_{G}^{2} + \sum_{\substack{j=1\\j\neq i}}^{n} V_{Kj}^{2} - 2 \sum_{\substack{j=1\\j\neq i}}^{n} V_{G} V_{Kj} \cos(G, K_{j}) - 2 \sum_{\substack{j=1\\j\neq i}}^{n} \sum_{\substack{l=1\\l \neq i\\l \neq j}}^{n} V_{Kj} V_{Kl} \cos(K_{j}, K_{l}).$$

Последнее слагаемое равно нулю, отсюда

$$\sum_{\substack{j=1\\i\neq i}}^{n} V_{Kj}^{2} = \sum_{\substack{j=1\\i\neq i}}^{n} V_{G}V_{Kj}\cos(G, K_{j}),$$

или

$$\frac{\sum_{\substack{j=1\\j\neq i}}^{n} V_{Kj}^{2}}{V_{G}} = \sum_{\substack{j=1\\j\neq i}}^{n} V_{Kj} \cos(G, K_{j}).$$

Из теоремы «О проекциях»

$$V_G = V_{Ki} \cos(G, K_i) + \sum_{\substack{j=1\\j\neq i}}^n V_{Kj} \cos(G, K_j)$$

или

$$V_G = V_{Ki} \cos(G, K_i) + \frac{\sum_{\substack{j=1 \ j \neq i}}^{n} V_{Kj}^2}{V_G}, \qquad V_G^2 = V_G V_{Ki} \cos(G, K_i) + \sum_{\substack{j=1 \ j \neq i}}^{n} V_{Kj}^2.$$

Из теоремы Пифагора

$$V_{Ki}^{2} + \sum_{\substack{j=1\\j\neq i}}^{n} V_{Kj}^{2} = V_{G}V_{Ki}\cos(G, K_{i}) + \sum_{\substack{j=1\\j\neq i}}^{n} V_{Kj}^{2}$$

или

$$\frac{V_{Ki}}{V_C} = cos(G, K_i).$$

Теорема доказана.

Теорема 4. Для ортогонального n-симплекса

$$\sum_{i} \cos^2 \alpha_i = 1.$$

Действительно, из теоремы Пифагора и из теоремы 3

$$\frac{V_G^2}{V_G^2} = \sum_{i=1}^n \frac{V_{K,2i}^2}{V_G^2} = \sum_{i=1}^n \cos^2(G, K_i) = 1.$$

Предложение 4. В ортогональном n-симплексе угол между гипотенузой и любым катетом является острым.

Теорема 5. В ортогональном n-симплексе квадрат синуса любого угла равен сумме квадратов косинусов остальных углов, т.е.

$$\sin^2 \alpha_i = \sum_{j \neq i} \cos^2 \alpha_j.$$

Действительно,

$$\sum_{i \neq i} \cos^2 \alpha_i = 1 - \cos^2 \alpha_i = \sin^2 \alpha_i.$$

Заключение

Приведенные теоремы справедливы также для n-симплексов, порядок которых ниже порядка пространства, в котором они рассматриваются.

Список использованных источников

- 1. Буров, А.А. Установившиеся движения симметричного равногранного тетраэдра в центральном поле сил / А.А. Буров, Е.А. Никонова // Известия Академии наук СССР. Механика твердого тела. 2021. № 5. С. 152-164.
- 2. Шодорова, С.Я. Смена знака приращения массы в параллельных симплексах четырехмерного пространства / С.Я. Шодорова, В.П. Воробьева, В.И. Луцык // Математические методы в технике и технологиях ММТТ. 2014. N oldot 4 (63). С. 19-23.
- 3. Иванисенко, Н.С. Вариант формулы Стокса для симплекса в четырехмерном пространстве / Н.С. Иванисенко // Спектральные задачи, нелинейный и комплексный анализ : сб. тез. международ. науч. конф. Уфа: Башкирск. гос. ун., 2015. С. 60-63.
- 4. Болучевская, А.В. О сохранении ориентации симплексов при отображениях некоторых классов / А.В. Болучевская // Проблемы региона в исследованиях молодых ученых Волгоградской области : сб. науч. тр. Волгоград : Волгоградский государственный университет, 2012. С. 61-64.
- 5. Горлач, Б.А. Многомерные симплексы в оптимизационных задачах / Б.А. Горлач, А.Ю. Горлач // Прикладные задачи математики : сб. тр. XXIII Международ. научн.-техн. конф. Севастополь: Федеральное государствен-

Прикладная математика

ное автономное образовательное учреждение высшего образования «Севастопольский государственный университет», 2015. – С. 102-106.

Материал поступил в редакцию: 25.12.2020 Материал принят к публикации: 02.02.2021

INFORMATION ABOUT THE PAPER IN ENGLISH

ABOUT SOME CALCULATIONS OF ELECTROSTATIC FIELD ENERGY

Popov I.P.

Abstract. Multidimensional simplices, special cases of which are tetrahedrons and triangles, are widely used both in science and in technical applications. The considered theorems are a generalization to n-dimensional simplices of some statements and theorems for triangles and tetrahedra, which are, respectively, two-dimensional and three-dimensional simplices. The definition of the angle of an n-simplex is given, which is understood as the angle between its two faces. An idea ofthe orientation of the elements of n-simplices relative to each other is introduced. A rule is given for determining the sequence of consideration of vertices in the analytical description of the faces of an n-simplex. A number of theorems have been proved for n-simplices, incl. the cosine theorem, the Pythagorean theorem, the projection theorem, etc. The above theorems are also valid for n-simplices whose order is lower than the order of the space in which they are considered.

Keywords: n-simplex, cosine, projection, tetrahedron, triangle.

References

- 1. Burov, A.A. (2021) Izvestiya Akademii nauk SSSR. Mekhanika tverdogo tela, 5: 152-164.
- 2. Shodorova, S.YA., Vorob'eva, V.P, Lucyk, V.I. (2014) Matematicheskie metody v tekhnike i tekhnologiyah, 4 (63): 19-23.
- 3. Ivanisenko, N.S. (2015) Variant formuly Stoksa dlya simpleksa v chetyrekhmernom prostranstve. *Spektral'nye zadachi, nelinejnyj i kompleksnyj analiz*, Ufa, S. 60-63.
- 4. Boluchevskaya, A.V. (2012) O sohranenii orientacii simpleksov pri otobrazheniyah nekotoryh klassov. *Problemy regiona v issledovaniyah molodyh uchenyh Volgogradskoj oblasti*, Volgograd: 61-64.
- 5. Gorlach, B.A., Gorlach, A.YU. (2015) Mnogomernye simpleksy v optimizacionnyh zadachah. *Prikladnye zadachi matematiki*, Sevastopol: 102-106.

ОБ АВТОРАХ:

Павлов Валентин Дмитриевич – старший преподаватель Владимирский государственный университет им. А.Г. и Н.Г. Столетовых. Email: pavlov.val.75@mail.ru.

ОБРАЗЕЦ ДЛЯ ЦИТИРОВАНИЯ:

Павлов, В.Д. Обобщение на n-симплексы некоторых соотношений для треугольников / В.Д. Павлов // Математическое и программное обеспечение систем в промышленной и социальной сферах. -2021. - T.9. - № 1. - C. 2-8. DOI: 10.18503/2306-2053-2021-9-1-2-8.

Pavlov V.D. (2021) Generalization to n-simplexes of some relations for triangles. Software of systems in the industrial and social fields. 9 (1): 2-8. DOI: 10.18503/2306-2053-2021-9-1-2-8.